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EFFECT OF VISCOSITY ON THE CONDITIONS FOR THE FORMATION OF
CENTRIFUGAL SOLITONS IN THE TRANSLATIONAL-ROTATIONAL FLOW OF A LIQUID*

R.A. BRAZHE

The viscosity of the medium is taken into consideration in deriving an
evolution equation describing the propagation of non-linear centrifugal
waves along the free surface of a translational-rotational liquid flow.
The result is the Burgers-Korteweg-de Vries (BKAdV) equation, for which a
steady solution is described in the form of a shock wave with soliton
oscillators near the front. Estimates are presented for the effect of
viscosity on the wave-front structure and the conditions of formation
previously predicted by the author /1/ for centrifugal solitons, which
play an important role in various atmosphere processes ¥ .

1. Derivation of the evolution equation. The problem of the propagation of centrifugal
waves along the free surface of a translational-rotational flow of an ideal incompressible
liquid can be reduced /1/ to solving the Laplace equation for the angular component :of the
vector potential of the velocity field, with non-linear boundary conditions. If viscosity is
taken into account, the kinematic boundary condition remains unchanged:
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but the dynamic condition, obtained by axial projection of the equation of motion for a viscous
incompressible liquid, is now
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Here v is the kinematic viscosity of the medium; the other notation retains its orginal

meanings.
Using the perturbation-theoretical procedure described in /1/, one can derive from (1.1)
a BKAV equation for the radial perturbation of the free surface of the flow in variables & —
z2 + ¢cot, T= —t
Ny + Sacoh Mg + Yok Mgy + Vi = 0 (1.3)

Here we have assumed that the dissipation is weak:
vied) €1 (e =rply, V(R —13)2 = vg V'hirg) (1.4)
where ¢, is the propagation velocity of a linear centrifugal wave /2/ along the free surface

of a twisted flow of thickness h =R —r,<r, and 1 is the length of the perturbed part of the

flow.
When there is no viscosity, (1.3) becomes a Korteweg-de Vries (KdV) equation, which has

a one-soliton solution in variables z, t##i#
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Dividing Eq.(1.3) by Y,k?, we reduce it to canonical form:
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##¥# We take this opportunity to rectify an error made in /1/: the coefficient of the non-1linear
terms in (3.3), (3.4) should be 3/2.
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2. Steady solution. Eq.(1.5) with weak dissipation describes a shock wave with oscil-
lations near the front /3/. To investigate the structure of these oscillations it is proposed
/4/ first two write down a periodic solution of the KdV equation, obtained from (1.5) by put-
ting v =0, and then to replace the arbitrary constants appearing in this solution by slowly
varying functions of x and v, for which it is then possible to derive Whitham's averaged
equations /5/, generalized to the weakly dissipative case.

We now use the results obtaiped in /4/. The required solution of the KAV equation is
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where dn(y,s) is the Jacobi function of modulus s, a is the amplitude of the oscillations, and
U defines the phase velocity of the wave in a reference system associated with the variables

z, 7.

In the reference system X ==z— Uv, in which the wave has a steady profile, the mean
value of the wave function <u), the amplitude a and wavelength.A may be written as follows
4/: ’ .
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where K and E are complete elliptic integrals of the first and second kinds of modulus s, u~
the size of the jump at the shock-wave front, U =1u-.

The value of s is determined by numerical solution of the equation

VIX—X)=F(s), F() =In[f E — (1 —sH(1 —s%2)K] — %/, Inf (5) (2.3)

where X, is the coordinate of the onset of the wave, chosen arbitrarily.

Substituting (2.2) and (2.3) into (2.1), one can uniguely determine the oscillatory
structure of the wave in a weakly dissipative medium. As the dissipation increases, the pro-
file of the shock wave front becomes monotonic. The solution of the BKAV equation for this
case was studied in /6/, using Backlund transformations.

It follows from (2.3) that far from the leading front of the centrifugal wave (X < X,)

s< 1, and the function dn(y,s) is approximately a superposition of harmonic functions /7/.
Near the front (X = X,); however s ~1 and dn(y,5) »sechy, i.e., the oscillations take the form of a
sequence of:solitons at distance A =X from one another, where A has the value indicated in (2.2).

Putting X — X =4, in (2.3) and going back to the original notation, one can find the
minimum rotational velocity of the flow for which soliton-like oscillations can form at the
leading edge of the shock wave:
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where - is the size of the jump in the radial shift of the free surface at the shock wave
front.

We end with a few estimates, putting r, =101 m, h=102 m, and n- =103 m. For water
at room temperature v —1.05 X 10-*m’/sec, which gives v, =105 m/sec. For a less viscous
liquid, centrifugal solitons form more easily. 1In the case of acetone, for example (v — 4.26 X107
m*/sec), v, =42 m/sec.

These results show that the formation of centrifugal solitons in translational-rotational
flow in real liquids in quite possible.
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